
HELOS | RODOS & Co. | Laser Diffraction

Particle Measurement | Laboratory Size and Distribution | < 0.1 μ m to 8,750 μ m

Technical Specifications

Modular Laser Diffraction Sensor for Particle Size Analysis

Sensor			
Label	HELOS/BR	HELOS/KR ¹	HELOS/KR-Vario ²
Overall measuring range	0.1 – 875 μm	0.1 – 8,750 μm	0.1 – 8,750 μm
Measuring range modules	5	8	8
Measuring principle			
Laser diffraction	Forward scatter	ing in parallel bea	m
	– classic optical	Fourier set up (IS	0 13320)
	– open measurir	ng zone offering u	inique
	working distar	nce	
Light source			
Helium-neon laser	$\lambda = 632.8 \text{ nm} \text{ (re}$	ed), $P_{out} \le 5 \text{ mW}$	
Laser class	3R with open di	spersion units	
	1 with closed di	spersion units	
Beam diameter	Automatic adjus	stment to measuri	ng range
	R1 / R2	2.2 mm	1
	R3 / R4(T) / R5(T	13.0 mm	1
	R6T / R7T	26.0 mm	1
	R6T / R7T / R8T	35.0 mm	1
Helium-neon laser Laser class	λ = 632.8 nm (ro 3R with open di 1 with closed di Automatic adjus R1 / R2 R3 / R4(T) / R5(T	ed), P _{out} ≤ 5 mW spersion units spersion units stment to measuri 2.2 mm 13.0 mm 26.0 mm	1 1

Measuring ranges and opti	cs			
Discrete measuring ranges	with highest precision and resolution ³ .			
		Focal length	Xmin, CLmin CLmax*-	X _{max}
HELOS/BR	R1	(f=20 mm)	0.10 0.18 -	35.0 μm
	R2	(f=50 mm)	0.25 0.45 -	87.5 μm
	R3	(f=100 mm)	0.50 0.90 -	175.0 μm
	R4T	(f=200 mm)	0.50 1.80 -	350.0 μm
	R5T	(f=500 mm)	0.50 4.50 -	875.0 μm
HELOS/KR	R1	(f=20 mm)	0.10 0.18 -	35.0 μm
HELOS/KR-Vario	R2	(f=50 mm)	0.25 0.45 -	87.5 μm
	R3	(f=100 mm)	0.50 0.90 -	175.0 μm
	R4	(f=200 mm)	0.50 1.80 -	350.0 μm
	R5	(f=500 mm)	0.50 4.50 -	875.0 μm
	R6T	(f=1,000 mm)	0.50 9.00 -	1,750.0 μm
	R7T	(f=2,000 mm)	0.50 18.00 -	3,500.0 μm
	R8T	(f=5,000 mm)	0.50 45.00 -	8,750.0 μm
	* Value	s indicate lower	upper limits of	first class.
Typical measuring				
range combinations				
Triple lens holding disc	R2 R4	4 R6T	0.25 0.45 -	1,750.0 μm
Quad lens holding disc	R1 R3	8 R5 R7T	0.10 0.18 -	3,500.0 μm

Detector and data acquisit	ion			
Multi-element detector	31 semi-c	rircular segment	ts (180°) for or	rientation-
	independ	ent characterisa	ation of even in	rregular
	shaped pa	articles		
	3 centre e	elements for pre	cise autofocu	s prior to
	every mea	asurement and	for continuous	s monitoring
	of optical	concentration	during measu	rement
Acquisition rate	2,000 diff	raction pattern	s per second	
Raw data recording	in up to 2	48 intensities		
Typical measuring times	Distribution wi	dth Measuring time ⁴	Sample amount ⁴	Standard deviation ⁵
minimum	narrow ⁶	< 10-100 ms	< 10-100 mg	< 1.0-1.5 %
	normal ⁷	< 0.1-1 s	< 0.1-1 g	< 1.5 %
	wide ⁸	< 1-10 s	< 1-10 g	< 2.0-2.5 %
recommended	narrow ⁶	1-3 s	< 0.1-2 g	< 1.0-1.5 %
	normal ⁷	2-10 s	< 1-10 g	< 1.0-1.5 %
	wide ⁸	5-30 s	< 10-100 g	< 1.5-2.0 %
	If continuous sample feeding is granted, sample			
	amount as well as measuring time is virtually			
	unlimited. In doing so, maximum standard			
	deviation	of three consec	cutive measure	ements
	always re	mains below 2.5	5 %.	

Evaluation modes	
FREE	<u>Fr</u> aunhofer <u>E</u> nhanced <u>E</u> valuation
	(Fraunhofer diffraction, parameter free)
MIEE ²⁰	<u>Mi</u> e <u>E</u> xtended <u>E</u> valuation
	(Mie Scattering, deploying the complex
	refractive index)
Combination of	Automatic combination of up to 4 high-resolution
measuring ranges ²⁰	measuring ranges capturing wide distributions
	$(ratio x_{90}/x_{10} > 1,000)^9$
	Calculation of an aggregated particle size distribu-
	tion with up to 57 size classes out of a maximum of
	124 independent observations.
	12 i maepenaent ooset vations.

Quality of measuring res	ults	
Accuracy*	σ < 1 %	mean relative standard deviation
		to absolute value (x ₁₀ x ₉₀)
Repeatability ¹⁰	$\sigma < 0.04~\%$	typical, wet measurement ¹¹
	σ < 0.3 %	typical, dry measurement ¹²
Comparability ¹³	σ < 1 %	mean relative standard deviation
		of median (x ₅₀)
	$ \Delta x_{50} < 2.5 \%$	maximum relative deviation
	* Evaluation of a	picket fence distribution

Adaptable Dispersion Units

for Powders, Granules, Aerosols, Sprays, Inhalants, Suspensions, Emulsions, Bubbles, Gels, ...

$\frac{\text{Dispersing range}}{\text{RODOS}} = \frac{\text{Sample amount per analys}}{< 0.1 - 3,500 \ \mu m} < 1 \ mg - 1,000 \ mg$ Injection disperser for finest,
$\frac{\text{Dispersing range}}{\text{RODOS}} \qquad \qquad \text{Sample amount per analys} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{Injection disperser for finest,} \\ < 0.1 - 3,500 \ \mu\text{m} \qquad < 1 \ \text{mg} - 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg} \rightarrow 1,000 \ \text{mg} \rightarrow 1,000 \ \text{mg} \\ \text{mg}$
RODOS < 0.1 – 3,500 μm < 1 mg – 1,000 Injection disperser for finest,
Injection disperser for finest,
even cohesive powders
GRADIS 0.5 - 8,750 μm 10 - 1,000
Gravity disperser for coarser,
even fragile particulate systems
VIBRI 16 < 0.1 - 15,000 μm 1 mg - 1,000
vibratory feeder for precise dosing
and feeding of dry particulate
systems
ASPIROS ¹⁶ < 0.1 - 875 μm < 1 mg - 1
micro dosing system for feeding
small amounts of precious or toxic
dry substances in encapsulated
sample vials ¹⁷

Dry and wet		
OASIS		
Combines RODOS	< 0.1 - 3,500 μm	< 1 mg - 1,000 g
and SUCELL;	0.1 - 1,750 μm	500 ml
small volume adapter (SVA) ²⁰		50 ml
VIBRI or ASPIROS		
for feeding of dry samples ¹⁶		

		1000
RODOS	GRADIS	RODOS/L

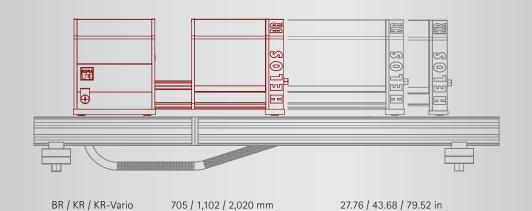
Wet ¹⁸		
	Dispersing range	Analysis volume
SUCELL		
Closed loop flow-through cell for	0.1 - 1,750 μm	500 ml
suspensions and emulsions;		
built-in sonication (0-72 W);		
small volume adapter (SVA) ²⁰		50 ml
QUIXEL	0.1 - 3,500 μm	300 - 1,000 ml
Closed loop flow-through cell for	·	
suspensions and emulsions, even with		
coarser, high density particles;		
built-in sonication (0-72 W);		
heatable ²⁰		
CUVETTE	Module integration	n platform
For small quantities of precious		
suspensions and emulsions		
SYSIPHUS Circulation cell* Stainless steel	0.1 - 875 μm	50 ml
CUVETTE 50 Stand cell* Quartz glass	0.25 - 3,500 μm	50 ml
* With sonication and magnetic stirrer		
CUVETTE 6 Stand cell** Quartz glass	0.1 - 87.5 μm	6 ml

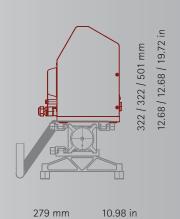
Sprays and Inhalants		
SPRAYER	0.25 - 875 μm	1 dose
Adapter for nasal and pharyngeal pump		
sprays with SMACTOR ¹⁹ actuator		
SMACTOR ¹⁹	0.25 - 1,750 μm	1 dose
Actuator with universal rack for		
flexible spray applications		
INHALER	0.25 - 1,750 μm	1 dose
Vacuum controlled adapter for aerosol		
analysis of DPIs, MDIs and nebulizers		

HELOS | R-Series | Laser Diffraction

The Modular Classic

Systems for Particle Size Analysis


Sensors | Dispersers | Evaluation | Quality


Quality assurance system		
Certification	Standardised	d test procedure
Reference material	SiC-F1200	$(x_{50} \approx 4.5 \ \mu m)$
	SiC-P600	$(x_{50} \approx 27 \ \mu m)$
	SiC-P80	$(x_{50} \approx 260 \ \mu m)$
	SiC-P50	$(x_{50} \approx 430 \ \mu m)$
Validation	according to	FDA regulations
Software		
PAQXOS	PC or remote	e control of application in terms of
Control and evaluation	sensor, dispersing units and sample feeding	
software for particle	Evaluation	
size analysis	– Fraunhofer Enhanced Evaluation (FREE)	
	 Mie Extended Evaluation (MIEE)²⁰ 	
	– mean values and standard deviations	
	- combination	on of measuring ranges ²⁰
	Presentation	of results based on user defined
	reports and	templates
	– diagrams (distribution curves, trend graphs)	
	– tables	
	– characteristic values	
	Powerful pro	ogramming interface for scripting
	and customi	zed applications
	Facilitated p	rocessing control
	Step-by-step	p wizard for quick and successful
	measuremer	nts
	Intuitive SOF	P management
	User-friendly	y, individual user interface

Compliance	
ISO 13320	The ISO standard requirements concerning
	"Particle size analysis – Laser diffraction methods"
	are met or even partially exceeded.
FDA 21 CFR Part 11	The compliance to FDA rule standards concerning
	electronic records and electronic signatures is
	provided.

System specification	ons			
		HELOS/BR	HELOS/KR	HELOS/KR-Vario
Dimensions (L/W/H) mm		705/279/322	1,102/279/322	2,020/279/501
Measuring zone	mm	123	123	123 to 1,400
				variable
Weight	kg	30	35	70
Supply voltage		90 - 250 V AC @ 50-60 Hz		
Power consumption		Standby	0.1 W	
		Laser mode	31 W	
		Ready	43 W	
Compressed air ²¹		Supply	max. 6 bar ISO 8573-1 Class 3	
		Consumption	typical 200 l/mii	n max. 300 l/min
Extraction ²²		Application dependent industrial extraction unit		

Computer specifications			
Operating system ²³	Microsoft® Windows® 10 Professional (64 Bit)		
Hardware specification ²⁴	Up-to-date desktop PC,		
	e.g., Intel® Core™ i7, min. 3.6 GHz, 8 GB RAM, 8 MB		
	Cache, SSD PCle 512 GB, Intel® HD Graphics 630		
	(integrated), DVD±RW		
Display	27" Full HD (2,560 x 1,440 px)		
Interfaces	Ethernet LAN connection (100 MBit/s)		

Dimension sheet